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Abstract
Numerical abstract domains are a fundamental component in mod-
ern static program analysis and are used in a wide range of sce-
narios (e.g. computing array bounds, disjointness, etc). However,
analysis with these domains can be very expensive, deeply affect-
ing the scalability and practical applicability of the static analysis.
Hence, it is critical to ensure that these domains are made highly
efficient.

In this work, we present a complete approach for optimizing the
performance of the Octagon numerical abstract domain, a domain
shown to be particularly effective in practice. Our optimization ap-
proach is based on two key insights: i) the ability to perform online
decomposition of the octagons leading to a massive reduction in op-
eration counts, and ii) leveraging classic performance optimizations
from linear algebra such as vectorization, locality of reference,
scalar replacement and others, for improving the key bottlenecks
of the domain. Applying these ideas, we designed new algorithms
for the core Octagon operators with better asymptotic runtime than
prior work and combined them with the optimization techniques to
achieve high actual performance. We implemented our approach in
the Octagon operators exported by the popular APRON C library,
thus enabling existing static analyzers using APRON to immedi-
ately benefit from our work.

To demonstrate the performance benefits of our approach, we
evaluated our framework on four published static analyzers show-
ing massive speedups for the time spent in Octagon analysis (e.g.,
up to 146x) as well as significant end-to-end program analysis
speedups (up to 18.7x). Based on these results, we believe that our
framework can serve as a new basis for static analysis with the Oc-
tagon numerical domain.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; F.2.1 [Numerical Al-
gorithms and Problems]: Computations on matrices

Keywords Fast numerical program analysis, octagon abstract do-
main, octagon decomposition, vectorized octagon operators, sparse
octagon operators, octagon closure algorithm
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1. Introduction
Abstract interpretation is a general theory for approximating pro-
gram semantics [11] and forms the basis of many static program
analyzers [4, 7, 13, 21]. The fundamental concept in the theory of
abstract interpretation is the abstract domain, a mathematical rep-
resentation of program properties equipped with a set of operators.
Over the last few decades, the research community has developed a
wide range of abstract domains targeting a diverse set of important
program properties including heap [26, 28], numerical properties
[12, 20, 22, 23], termination [29, 30] and many others. In this work
we focus on numerical domains, which are at the core of any mod-
ern static analyzer [6–8, 13, 24, 25].

Performance gap. One of the fundamental tensions in abstract
interpretation and static analysis in general is coming up with ab-
stract domains that are both precise enough to capture interesting
properties yet are scalable and efficient enough to handle real-world
programs. This trade-off is particularly stark in the case of numer-
ical domains where over the years, researchers have devised vari-
ous numerical abstract domains [20, 22, 23] that are less expres-
sive than the powerful Polyhedra [12], yet are more efficient (and
still precise enough) to handle larger and more complex programs.
However, there is still a large gap between the mathematical defini-
tion of an abstract domain and how this domain is actually imple-
mented. Addressing this gap is important and may be the difference
between being able to analyze a program in reasonable time or not
at all.

This work. In this work, we present a comprehensive end-to-
end approach for optimizing the performance of the Octagon ab-
stract domain, a widely used powerful relational domain which
strikes a balance between expressivity and efficiency of its oper-
ators. Our work is based on two key insights. First, we observe
that we can decompose octagons during program analysis and in-
crementally maintain and update this decomposition as the analy-
sis proceeds, without incurring prohibitive overhead. This enables
us to design octagon data structures and operators which lever-
age this decomposition and work on “smaller decomposed pieces”
rather than on the entire monolithic octagon. Second, we exploit
the matrix-based representation of octagons to apply known nu-
merical code optimizations from high performance linear algebra
[16] such as vectorization, locality of reference, scalar replacement
and others. As we will show, our work leads to significant benefits
both in asymptotic and actual runtime when analyzing real-world
programs.

We implemented our new octagon operators as part of the
APRON C library, preserving its existing API. This means that
our new library can be directly plugged into any program analyzer
already using APRON, which we demonstrate by running several
existing analyzers [6, 8, 24, 25], showing massive speedups for the
Octagon operators as well as significant speedups for end-to-end
analysis times.
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Encoded Octagon Inequalities

−2x ≤ 2 y − x ≤ ∞ −y − x ≤ ∞
2x ≤ ∞ y + x ≤ 5 x− y ≤ ∞

x− y ≤ ∞ −x− y ≤ ∞ −2y ≤ ∞
x+ y ≤ 5 y − x ≤ ∞ 2y ≤ 4

Figure 1: An example DBM encoding octagonal inequalities be-
tween variables x and y.

Main contributions:. In summary we contribute:

• New data structures and algorithms for octagons and the asso-
ciated operators of the Octagon domain. Our algorithms per-
form and maintain octagon decomposition online during analy-
sis, and incrementally maintain that decomposition as the anal-
ysis proceeds. This enables operators to focus only on the rel-
evant parts of the octagon and to perform even asymptotically
less work than state-of-the-art operators (which operate on the
entire octagon).
• A new algorithm for computing octagon closure (the most ex-

pensive operator) which, besides the above reductions, reduces
the cost to half. Further, its implementation uses state-of-the art
optimizations from linear algebra performance libraries.
• A complete end-to-end implementation of our algorithms and

optimizations inside the APRON library, enabling existing an-
alyzers based on APRON to directly use our implementation
without any changes.
• A thorough experimental evaluation showing massive speedups

of Octagon operators on realistic programs as well as significant
end-to-end speedups for several state-of-the-art static analyzers.

2. Background: Octagon Abstract Domain
In this section we provide the necessary background on the Octagon
abstract domain [23]. We provide basic definitions and introduce
the most important operators using a simple example. Finally, we
identify key optimization opportunities, which are then explored in
the remainder of the paper.

2.1 Octagon Abstract Domain
The Octagon domain is a relational numerical abstract domain
supporting binary inequalities of the form aivi − ajvj ≤ c. Here,
vi and vj are variables, ai, aj ∈ {−1, 0, 1} are coefficients, and
c ∈ R∪{∞} is the bound of the inequality. Note that the inequality
with c = ∞ always holds. An element in the octagon domain is a
conjunction of such inequalities and called octagon. An example
is the formula (x + y ≤ 5) ∧ (y + z ≤ 3), while the formula
(5x + y ≤ 7) is not because the coefficient 5 is disallowed by
the Octagon domain. In two dimensions (i.e., two variables), such
inequalities can describe (the usual) octagons, which motivates the
name.

Representing octagons. The data structures commonly used
to encode octagons are difference bound matrices (DBMs) [23].
Let V = {v0, . . . , vn−1} denote a set of n variables. For each
variable vi, we introduce two variables v+i and v−i , where v+i =

vi and v−i = −vi. We obtain the extended variable set V̂ =
{v̂0, v̂1, . . . , v̂2n−1} where v̂2i = v+i and v̂2i+1 = v−i , 0 ≤ i < n.

A full DBM is a 2n× 2n-matrix O. The matrix entry Oi,j = c
encodes the inequality v̂j − v̂i ≤ c, 0 ≤ i, j < 2n. Fig. 1
shows an example DBM and the associated encoded inequalities.
For simplicity we use the symbol · instead of ∞. For example,

O1,2 represents the inequality y+−x− ≤ 5, i.e., y+x ≤ 5. Since
0 ≤ 0, all Oi,i = 0. Note that the inequality −2x ≤ 2 arises from
x− − x+ ≤ 2.

Redundancy in representation. The full DBM encodes 4n2

inequalities but contains redundancy: at most 2n2 +2n are unique.
Namely, vj − vi ≤ c can be represented either as v+j − v+i ≤ c or
as v−i − v−j ≤ c. For example, in Fig. 1, x+ y ≤ 5 is represented
by both entries O1,2 and O3,0: O3,0 encodes x+ − y− ≤ 5 and
O1,2 encodes y+−x− ≤ 5. In general, Oi,j and Oj⊕1,i⊕1 (where
⊕means bitwise xor) encode the same inequality. Thus, if we view
the DBM as a matrix of 2× 2 submatrices, this redundancy can be
exploited by storing and maintaining only the lower triangular part,
marked with bold lines in Fig. 1.

In this work we distinguish between trivial and non-trivial Oc-
tagon inequalities. Trivial inequalities are always true (e.g., vi −
vj ≤ ∞ or 0 ≤ 0) and impose no constraint on the variables. A
non-trivial inequality, however, does not always hold (e.g. vi−vj ≤
2) and hence constrains the set of values that the variables can take.
The top (maximal) element > in the Octagon domain imposes no
constraints (Oi,i = 0, Oi,j = ∞) and thus contains all other oc-
tagons.

Octagon operators. The Octagon abstract domain (like any ab-
stract domain) is equipped with a number of operators that are
used for building program analyzers. These operators capture the
effect of standard programming constructs (e.g., assignments, con-
ditionals) in the abstract domain. Practical libraries implementing
Octagons such as APRON [19] contain many operators of various
complexity to support a wide range of programs.

While our implementation handles these operators, in the pre-
sentation of this work we focus on explaining the key concepts on
only a representative subset consisting of Join (t), Widening (5),
Meet (u), Top, and Closure ((·)∗). As explained later, Closure is
critical as it is the most expensive operator. Next, we informally in-
troduce these operators using a simple example: the program shown
in Fig. 2.

2.2 Program Analysis with Octagons: An Example
In a program analysis setting, usually a single octagon is main-
tained at each program point: it represents knowledge about the
variable ranges before its execution. We refer to the octagons in
our example Fig. 2 as O1, O2, . . . , O6. The analysis proceeds iter-
atively by selecting an octagon at a given program point, say O1,
applying the effect of the given program statement at that point on
that octagon (i.e., x=1), and producing a new octagon, in this case
O2. The analysis terminates when it reaches a fixed point, i.e., when
all octagons remain unchanged.

Example iteration. Upon startup, the analysis initializes all
octagons to the top element: Oi = >. An example is O1 in Fig. 2.
Next, the analysis processes the statement x=1. This assignment
imposes two new inequalities 2x ≤ 2 and −2x ≤ −2 on the
octagon O1. This effect is captured by computing the intersection
of these two inequalities with O1. This intersection is computed
using the Meet (u) operator. For two same inequalities on the
same variables, meet outputs the one with the smaller bound. For
example, the meet of 2x ≤ ∞ represented in O1 with the inequality
2x ≤ 2 results in the inequality 2x ≤ 2 stored in the resulting
matrix O2. In this case, meet requires constant time; in general, the
meet of two octagons has an asymptotic complexity of O(n2).

For the next assignment statement y=x, the constraints x− y ≤
0 and y−x ≤ 0 induced by that statement are similarly intersected
with the octagon O2 again via the meet operator, resulting in the
octagon O3. Note that since the analysis has not yet encountered the
variable m, the DBM O3 does not contain non-trivial inequalities
involving that variable.
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Figure 2: Octagon analysis (first iteration) on the example program (bottom left).

Algorithm 1 Octagon Closure on full DBM

1: function OCTAGON CLOSURE FULL(O,n)
2: Parameters:
3: O ← input full DBM
4: n← number of variables
5: for k ∈ {0, 1, . . . 2n− 1} do . Shortest path closure
6: for i ∈ {0, 1, . . . 2n− 1} do
7: for j ∈ {0, 1, . . . 2n− 1} do
8: Oi,j = min(Oi,j , Oi,k +Ok,j)

9: for i ∈ {0, 1, . . . 2n− 1} do . Strenghtening step
10: for j ∈ {0, 1, . . . 2n− 1} do
11: Oi,j = min(Oi,j , (Oi,i⊕1 +Oj⊕1,j)/2)

The analysis proceeds with interpreting the statements inside
the loop body. We omit the resulting matrices O4 and O5 and
only show the final DBM O6. The analysis now returns to the loop
head and propagates the octagon O6 to that point. To compute the
new result at the loop head, the analysis now has to compute the
union of the matrix O6 with the previous matrix at that point, O3.
The union of two octagons is in general not an octagon; thus an
overapproximation is computed via the Join (t) operator. The join
operator is conceptually simple: it produces a new matrix where
each entry in that matrix is the corresponding maximum entry of
the two input matrices.

Closure. The degree of over-approximation while computing
the join can be reduced by first applying the so called closure op-
erator on both O3 and O6, and then joining the resulting octagons.
In fact, several Octagon operators besides join use closure to ob-
tain better precision. Informally, the closure operator adds all con-
straints to a DBM that can be derived by others. Its pseudo-code
on full DBMs is shown in Algorithm 1 (due to [3]). It consists of a
shortest path closure step which minimizes inequalities transitively
and a strengthening step. Importantly, the closure has cubic com-
plexity in n. It is the only operator with this property and thus the
single most expensive one for the Octagon domain.

Returning to our example, for O3 the shortest path step of the
closure combines y − x ≤ 0 and x ≤ 1 to obtain the inequality
y ≤ 1. The strengthening step combines x ≤ 1 and y ≤ 1 in O3 to
obtain x + y ≤ 2. The closed O3 and O6, shown at the bottom in

Fig. 2 as O∗3 and O∗6 , are then joined to produce the new octagon O3

(rightmost in Fig. 2). The join operator takes the maximum of each
entry, analogous to the meet operator, and has worst-case quadratic
complexity in n.

Widening. As usual in program analysis, one needs to make
sure that the analysis terminates in a timely manner. In particular
for loops, this is done with the widening operator that accelerates
convergence. Specifically, if the bound of an inequality keeps in-
creasing in every iteration then the widening operator sets it after
a few steps to ∞. This operator has an asymptotic complexity of
O(n2).

2.3 Performance Optimization: Opportunities and
Challenges

The goal of this paper is to considerably improve the perfor-
mance of program analyzers that use the Octagon domain. We
do this by identifying and exploiting redundancy and structure
when performing the Octagon operators, combined with classic
architecture-cognizant optimization techniques commonly used in
high-performance numerical libraries. We identify the following
main opportunities:

• During program analysis, many variable pairs are not related
by inequalities, i.e., the DBM is sparse in the sense that many
entries are = ∞. Exploiting this sparseness can significantly
reduce the cost of operators.
• A more specific case of sparseness occurs when the set of vari-

ables decomposes into subsets that are mutually unrelated to
each other. In this case, the expensive closure can be decom-
posed to work on these smaller components.
• The matrix-based representation of octagons and operators

should make common numerical performance optimizations
like vectorization, locality of reference, scalar replacement,
applicable. In particular, these can be carefully designed and
applied to optimize the closure operator, which is the key bot-
tleneck.

Exploiting these opportunities poses significant challenges. In
contrast to other domains of numerical computing, the above men-
tioned matrix structures continually change dynamically during
program analysis. Thus, these changes have to be performed ef-
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Figure 3: Computation of independent components for an octagon matrix.

ficiently, in turn requiring appropriate data structures. Accordingly,
all supported Octagon operators have to be modified or redesigned
to exploit the underlying structure and to maintain that structural
information for subsequent operators performed in the analysis.

3. Leveraging Octagon Structure
In this section we present new data structures which leverage the
structure of octagons. Our solution accounts for the different DBM
structures that occur during analysis by introducing four DBM
types: Dense, Sparse, Decomposed and Top. The key ideas are:

• To enable efficient switching between data types during analy-
sis, each type includes a complete DBM (with all n variables)
augmented with additional information depending on the struc-
ture. In particular, the number nni of entries <∞ is maintained
in all types.
• The DBM in each type is pre-allocated but initialized incremen-

tally on-demand. Specifically, trivial entries are inserted only if
needed.
• The additional information maintained by each type is used

to design more efficient octagon operators (explained in next
section).

Next, we present the different DBM data types and explain how we
switch between types.

3.1 Dense
In the absence of structure, octagons are represented as dense
DBMs (as in Fig. 1 and Fig. 2). This is the encoding of octagons
commonly used in practice, including in APRON. We augment the
DBM with the number of entries <∞, called nni (number of non-
infinity values).

3.2 Sparse
We introduce a special type to represent sparse DBMs. There are
various sparse representations, widely used in linear algebra, in-
cluding compressed sparse row (CSR) and adjacency lists. How-
ever, the former does not support an efficient change of the sparsity
pattern, and both do not support an efficient conversion to a dense
matrix which is important to address as this change may occur dur-
ing the program analysis. Thus, as mentioned already, we use a
complete DBM (as in Fig. 2) augmented with the number of ele-
ments that are <∞. We do not maintain an index of the non-trivial
entries as this would lead to a quadratic space overhead. But, as
explained later, we do compute such an index in conjunction with
each closure to reduce computation cost.

3.3 Decomposed
In octagons that occur during the analysis of real-world programs,
the set of variables tends to decompose into groups where variables

in a group are related via inequalities, while variables from different
groups are not related via any inequality. We refer to such a group
as an independent component. These independent components can
be used to decompose a large octagon into smaller octagons, and in
particular the closure can be decomposed accordingly, resulting in
significant performance improvements.

Decomposition vs. variable packing. The concept of decom-
posing a large octagon into smaller octagons has been applied pre-
viously using variable packing [32]. However, in the case of vari-
able packing, the decomposition is done before running the analysis
and is thus not based on abstract semantics. Importantly, two vari-
ables in separate packs could become connected during analysis
even though they are not related in the program. As a result, the
analysis may lose overall precision.

In contrast, our approach dynamically decomposes octagons
during analysis according to the semantics of octagon operators
and guarantees that if two variables are not in the same independent
component they will only have trivial inequalities. Thus, the overall
precision of the analysis is not affected.

Formal definition of independent components. Let O be the
given octagon and V be the set of variables at a given program point
in the analysis. The set of non-trivial inequalities Cv1,v2 between
two variables v1 and v2 is:

Cv1,v2 =

{
{±v1 ± v2 ≤ c ∈ O | c 6=∞}, v1 6= v2,

{±2v ≤ c ∈ O | c 6=∞}, v = v1 = v2.

We define a connectivity relation R on variables:

R = {(v1, v2) | v1, v2 ∈ V, Cv1,v2 6= ∅}

We compute the reflexive, transitive closure R∗ of R which is
an equivalence relation on possibly a subset V ′ ⊆ V . Then, the
independent components are the elements of the induced partition
V ′/R∗.

Example. Consider the DBM shown on the left in Fig. 3 for
V = {u, v, x, y, z}. Here, u, x and x, z participate in non-trivial
inequalities among themselves as shown in R. In R∗, by transi-
tivity, u and z will be connected as well. Note how the variable y
does not participate in R, that is, V ′ = V \{y}. As a result, we ob-
tain two independent components {u, x, z} and {v}; the associated
smaller DBMs are colored as gray and blue in the DBM.

Data Structure. The Decomposed type stores the DBM, pos-
sibly not fully initialized, while the independent components are
stored as a linked list of linked lists of variable indices (here, the
linked lists of variable indices are sorted). In addition, the number
of matrix entries <∞ are also stored.

Because independent components correspond to submatrices in
the complete DBM, these submatrices themselves can be either
Dense or Sparse. Since this information is only relevant for the
expensive (cubic complexity) closure, the exact sparsity is com-
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Figure 4: Join of two octagons using independent components. Gray entries in matrices correspond to the intersection of independent
components. Blue entries in input matrices correspond to independent components that are not in the intersection.

puted on-the-fly prior to each closure. We explain how this is ac-
complished in later sections.

3.4 Top
The Top type is used to represent the highest (least precise) ele-
ment in the Octagon domain. It includes a matrix that is allocated
uninitialized and contains an empty set of independent components
(e.g., O1 in Fig. 2).

3.5 Switching between DBM Types
When performing program analysis with the Octagon domain, all
DBMs are usually initialized to the Top type. As the analysis pro-
ceeds, DBMs tend to become more dense. A typical progression
of types would be starting from Top to Decomposed to Dense. Be-
cause each type keeps the DBM, switching between types is as sim-
ple as discarding the additional information, possibly accompanied
with initialization of entries to∞. Such initialization could happen
for example, when converting from a Decomposed to a Dense type
(a Dense type requires a fully initialized matrix).

To decide when to switch from Sparse or Decomposed to a
Dense type and vice versa, we consult the value nni of entries <∞.
Specifically, we define the sparsity of a DBM as:

D = 1− (nni /(2n2 + 2n))

and use Dense type if D < t, 0 ≤ t ≤ 1 (e.g., t = 3/4).
However, during program analysis, the sparsity can also in-

crease again, i.e., entries in the matrix that are < ∞ can again
become ∞. This can happen for instance when the widening op-
erator is applied. Recovering this sparsity information exactly, and
the potential independent components it might produce, has a worst
case complexity of O(n2).

To avoid this cost, we only perform the exact re-computation
of sparsity and independent components (only if needed) by piggy-
backing on the (expensive) closure operator. As closure is a com-
mon subroutine for many operators, it follows that the sparsity in-
formation of the DBM will be always up-to-date or close to it. For
similar reasons, we also choose closure computations as switching
points.

4. Octagon Operators
Next, for each data type, we describe the corresponding algorithms
of the octagon operators. The key ideas are:

• Operators for the Dense type are vectorized.
• The closure operator can be specialized for the Sparse type to

reduce operation count.
• Operators can be applied independently on submatrices of the

Decomposed type, reducing operation count.

4.1 Operators for Dense Type
The operators for the Dense type are vectorized using Intel’s AVX
intrinsics. We present dense closure in Section 5.2 which reduces
the operation count of the current state-of-the art algorithms to half.
The operators working on the Dense type set the value of nni to
2n2 + 2n which is an over-approximation of the actual number of
entries <∞. This is a reasonable assumption as the actual number
of entries < ∞ for the Dense type should be close to 2n2 + 2n.
This also avoids the overhead of checking if an entry is <∞.

4.2 Operators for Sparse Type
We do not maintain auxiliary information for tracking locations of
∞ when representing the Sparse type. Instead, when performing
closure, we build an index for the <∞ entries arising in the Sparse
type, with quadratic time and linear space overhead. This index
keeps track of locations of operands < ∞ for a given iteration
(Section 5.3). The index is not useful for other operators and is
discarded after closure. Thus, we designed a special algorithm for
the closure when working with the Sparse type. The sparse closure
already checks if an entry is < ∞ and thus nni can be calculated
precisely without incurring large overheads.

4.3 Operators for Decomposed Type
Recomputing the independent components for each operator from
scratch is too expensive and should be avoided. We do this by
computing the independent components incrementally, possibly
making conservative decisions, i.e, producing coarser partitions.
The key benefit is that many octagon operators can then work
on the submatrices represented by the independent components,
significantly reducing operation count.

Cost of updates. The cost of updating the set of independent
components depends on the size of the set. The number of inde-
pendent components is usually small (i.e. < 5) and thus the update
cost is negligible compared to the cost of octagon operators. For
example, a Meet (u), Join (t) or a Widening (5) of two octagons
O1 and O2 induces respectively the operators ∪, ∩ and ∩ on the
sets of independent components. We discuss how the independent
components are updated when performing closure in Section 5.4.

Octagon operators on the decomposed type. Given a set of in-
dependent components, we now discuss how to adapt the octagon
operators to work with the Decomposed type. As noted earlier, the
submatrices represented by the components can be either Dense
or Sparse. As the submatrices need not be contiguous, we can-
not vectorize the operators for the dense submatrices directly. A
workaround is to copy the submatrix, apply the operator and then
copy back the result. All octagon operators except closure are at
most quadratic, thus quadratic overhead due to copying will cancel
out any performance gained due to vectorization. Thus, for dense
submatrices, we only vectorize the closure operator (as it is cubic).
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Table 1: Cost of closure(left), t (middle) and u (right) operator for different matrix types.

Input Type Closure Input1 Type Input2 Type Join (t) Meet (u)

Output Type Complexity Output Type Complexity Output Type Complexity

Top Top O(1) Dense Dense Dense O(n2) Dense O(n2)

Sparse Sparse O(n2 +
n∑

i=1
kili) Dense Top Top O(1) Dense O(n2)

Dense Dense O(n3) Dense Decomposed Decomposed
m∑
i=1

si Dense O(n2)

Decomposed Decomposed
m∑
i=1

si Top Top Top O(1) Top O(1)

Top Decomposed Top O(1) Decomposed
m∑
i=1

si

Decomposed Decomposed Decomposed
m∑
i=1

si Decomposed
m∑
i=1

si

If the submatrix is Sparse, we directly use the sparse closure men-
tioned earlier. In summary, we apply the standard non-vectorized
and non-sparse operators on submatrices except when we apply the
closure operator. Finally, the number nni of entries < ∞ for the
Decomposed type is computed as the sum of its submatrices’s nni .

Reduction in operation count. Decomposition is key to reduc-
ing the work performed by octagon operators. Fig. 4 illustrates this
for the join operator. Here, the independent components of the two
input matrices are colored. Without independent components, we
need to operate on the entire matrices. Since the join of two oc-
tagons is reflected as an intersection of the corresponding indepen-
dent components of each matrix, the join operator need only op-
erate on the submatrix corresponding to the intersection (shown in
gray in the result of the join in Fig. 4). For the example, we need to
access only 16 out of the 60 entries in both matrices.

Over-approximation. It is possible that updating the set of
independent components online leads to an over-approximation
of the actual set of independent components in the DBM. For
example, in Fig. 4, the set of independent components computed
by ∩ for the output matrix is {x, z} and {v}. However, extracting
independent components from the output directly produces {x}
and {v}. Thus, in this case, we computed an over-approximation
of the optimal set. However, it is important note that this over-
approximation does not affect the precision of the analysis: it only
produces more operations than strictly were necessary. The exact
recomputation of the components with closure makes sure that the
over approximation does not quickly deteriorate to the dense case.

4.4 Operators for Top Type
The Top type can be seen as a degenerate case of the Decomposed
type with an empty set of independent components. Thus, we can
reuse the operators of the Decomposed type.

4.5 Complexity of Octagon Operators
Let si be the cost of applying an octagon operator on the i-th
submatrix of Decomposed type, n be the number of variables, ki
be the total number of entries <∞ in 2i and (2i+ 1)-th rows and
li be the total number of entries <∞ in 2i and (2i+1)-th column
of a closed matrix. Table 1 shows the asymptotic complexity of the
closure, join and meet operators for the different types.

We note that the cost of these operators realized in popular
libraries is O(n3), O(n2) and O(n2) respectively. If a matrix of
Sparse type contains very few entries <∞, the cost of the octagon
closure becomes quadratic. For a Decomposed type, the individual
submatrices are smaller, hence even if all these submatrices are
dense, we reduce operation count. We reduce operation count for
t except when both input matrices are of type Dense. For u, the

operation count is reduced only when neither of the matrix is of a
Dense type.

5. Optimizing Closure
In this section we present our optimizations for the closure operator.
We first discuss the closure as implemented in current libraries
(e.g., APRON) and then present our specialized closures for each
of the four octagon types. Finally, we briefly discuss incremental
closure.

5.1 Standard Octagon Closure
The standard closure was already shown in Algorithm 1, consisting
of two steps. The shortest path step is the same as the classic
Floyd-Warshall all-pairs shortest path [15] on a full DBM (of size
2n × 2n). To improve space efficiency, the octagon analysis in
APRON stores only the lower triangle (half representation) of the
full DBM. The full DBM representing an octagon is not symmetric
which means the shortest path closure on a half representation is not
the same as applying Floyd-Warshall directly on the lower triangle
of a full DBM.

Shortest path step on half representation. The full DBM
has two entries (in upper and lower triangle) encoding the same
inequality. These entries may get the same update (minimization
using same inequalities) in alternate iterations due to asymmetry
of the full DBM. For Floyd Warshall, entries in the k-th row
and column do not change during the k-th iteration, therefore, as
shown in Fig. 5, O2k,i⊕1 (black in lower triangle) does not change
during the (2k)-th iteration whereas Oi,2k+1 (in upper triangle) is
updated. Thus, when Oi,2k+1 is required for updating Oi,j during
the (2k + 1)-th iteration on the half representation, the accessed
entry O2k,i⊕1 (in the lower triangle) is not yet in a correct state. To
account for this case, as shown in Algorithm 2, APRON performs
two min operations per iteration of the outermost loop which runs
from 0 to 2n − 1 (thus adding almost same number of operations
as Floyd-Warshall on full DBM).

Strengthening on half representation. The diagonal operands
Oi,i⊕1 and Oj⊕1,j for the strengthening step of Algorithm 1 are
present in the lower triangle. Thus, strengthening can be applied
on the half representation with operation count reduced to half.
Overall, the standard octagon closure performs 16n3 +22n2 +6n
operations.

5.2 Dense Closure
We now show how to reduce the operation count of shortest path
closure on the Dense type (with half representation) to 8n3 +
10n2+2n. We also leverage numerical performance optimizations
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O2k,j

O2k+1,j

Oi,j

Oi,2k Oi,2k+1

2k

2k + 1

2k 2k + 1

Figure 5: On left we show computation of Oi,j for (2k + 1)-th
iteration of outermost loop of Algorithm 2. The gray matrix entries
on the right are computed first for k-th iteration of the outermost
loop in Algorithm 3.

Algorithm 2 APRON’s Shortest Path Closure

1: function SHORTEST PATH CLOSURE APRON(O,n)
2: Parameters:
3: O ← input half DBM
4: n← number of variables
5: for k ∈ {0, 1, . . . 2n− 1} do
6: for i ∈ {0, 1, . . . 2n− 1} do
7: for j ∈ {0, 1, . . . (i|1)} do
8: Oi,j = min(Oi,j , Oi,k +Ok,j)
9: Oi,j = min(Oi,j , Oi,k⊕1 +Ok⊕1,j)

Algorithm 3 Shortest Path Closure on Dense Type

1: function SHORTEST PATH CLOSURE DENSE(O,n)
2: Parameters:
3: O ← input half DBM
4: n← number of variables
5: for k ∈ {0, 1, . . . n− 1} do
6: update 2k and (2k + 1)− th column
7: update 2k and (2k + 1)− th row
8: for i ∈ {0, 1, . . . 2k − 1, 2k + 2, . . . 2n− 1} do
9: for j ∈ {0, 1, . . . 2k − 1, 2k + 2, . . . (i|1)} do

10: Oi,j = min(Oi,j , Oi,2k +O2k,j)
11: Oi,j = min(Oi,j , Oi,2k+1 +O2k+1,j)

such as vectorization, locality of reference, scalar replacement (pre-
viously applied to Floyd Warshall on full DBMs [18]).

Reduction in operation count. The reduction is accomplished
by changing the computation order of loop iterations. That is, the
2k-th and (2k+1)-th iterations of the outermost loop in Algorithm
2 are performed together as a single iteration k in the new Algo-
rithm 3. We first update the entries in 2k and (2k + 1)-th row and
column of the lower triangle as shown in Fig. 5 (right). This update
requires accessing operands only from the lower triangle (thus no
asymmetry issues) and can be done with one min operation per en-
try. Once we have updated the operands, the rest of the entries can
be updated correctly. Thus, we perform two min operations per it-
eration of the outermost loop which now runs from 0 to n − 1,
reducing operation count by half.

Performance optimizations for shortest path closure. During
the k-th iteration of the outermost loop of Algorithm 3, some of the
row operands O2k,j and O2k+1,j (that may be in the upper triangle)
are accessed as column entries Oj⊕1,2k+1 and Oj⊕1,2k in the
lower triangle respectively. Thus, the inner j-th loop accesses such
entries columnwise. This can create a large number of cache and
TLB misses which can affect performance negatively. To improve

spatial locality, we perform a memory optimization where we store
the updated values of 2k and (2k + 1)-th column in an array
before updating the remaining entries. This way the inner j-th loop
accesses the entries sequentially.

Performance optimizations for strengthening. During the
strengthening step, operands Oi,i⊕1 and Oj⊕1,j are accessed diag-
onally which can result in cache and TLB misses. We note that the
value of these diagonal operands does not change during strength-
ening. We therefore store these entries in an array before strength-
ening is applied. As a result, all operands are accessed sequentially
during strengthening.

The performance optimizations for both steps require linear
space overhead for storing the array.

Vectorization for shortest path closure. Once we have up-
dated the entries in the 2k and (2k + 1)-th row and column for
the k-th iteration of the outermost loop in Algorithm 3, the remain-
ing entries can be updated in any order. This enables a vectorized
update of the remaining entries.

Vectorization for strengthening. Because the operands for the
strengthening step do not change, the computation can be per-
formed in any order. Storing all of the diagonal operands in an array
allows us to access operands in contiguous order, in turn enabling
vectorization of this step. Note that storing diagonal operands in an
array not only improves memory performance, but also allows us
to perform vectorization which would not be possible otherwise.

5.3 Sparse Closure
So far we showed how to reduce the operation count of octagon
closure for dense DBMs to half. In this section, we now show how
to further reduce the operation count of Algorithm 3 for Sparse
types.

Shortest path closure. By definition, sparse matrices have a
large number of∞ values. As shortest path closure is a transitive
minimization step, we need to update an entry Oi,j only when both
operands Oi,k and Ok,j are <∞. When updating 2k and (2k+1)-
th row and column during the k-th iteration of Algorithm 3, we
compute an index for the location of entries < ∞ in the 2k and
(2k + 1)-th row and column. A min operation for Oi,j is then
performed only when both operands (for example Oi,2k and O2k,j)
are present in the index.

Strengthening. The strengthening step is also a minimization
step. An entry Oi,j needs to be updated only when both operands
Oi,i⊕1 and Oj⊕1,j are <∞. We maintain an index for locations of
operands <∞. A min operation for Oi,j is performed only when
locations of both operands Oi,i⊕1 and Oj⊕1,j are present in the
index.

Storing indices for both the shortest path closure and the
strengthening step requires linear space overhead.

Complexity. The time complexity of sparse closure depends on
the distribution of entries <∞. For each iteration of the outermost
loop of the shortest path, we have to scan two rows and columns
in order to build the index. This takes linear time for each iteration
and thus the complexity of sparse closure is at least quadratic (in
comparison, the worst-case time complexity for dense matrices is
cubic).

Performance optimizations. We perform similar performance
optimizations for sparse closure as we did for the dense closure.

5.4 Decomposed Closure
Recall that the submatrices corresponding to a Decomposed type
can be dense or sparse. Therefore, we designed the closure algo-
rithm for the Decomposed type in a way which takes advantage of
the sparse and dense closure algorithms described above.

Shortest path closure. This step creates a new non-trivial in-
equality between two variables only if there is a variable which
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has a non-trivial inequality with both of them. Thus two variables
in different components cannot get connected during this step (ac-
cording to relation R discussed in Section 3). Hence, we can apply
shortest path closure on each submatrix independently. For each
submatrix, we first calculate the sparsity to check if it is sparse or
dense. If it is sparse, we use the sparse shortest path closure. As dis-
cussed in Section 4.3, we cannot apply the vectorized dense shortest
path closure on dense submatrices as they may not be contiguous.
Hence we first copy the submatrix into a temporary matrix, apply
vectorized Algorithm 3 on that matrix, and copy the result back to
the original submatrix.

Strengthening. The strengthening step can result in merging of
independent components. If there are finite diagonal operands of
the form Oi,i⊕1 with variables belonging to different independent
components, then these components are merged (via ∪). This re-
sults in original submatrices replaced by a new larger submatrix
which may need to be partially initialized. The new submatrix is
likely to be sparse and thus we use the sparse strengthening algo-
rithm on the new submatrix.

5.5 Top Closure
A matrix of Top type is already closed as it has only trivial inequal-
ities which cannot be minimized, hence we do not perform closure
on octagons of this type.

5.6 Incremental Closure
It is possible to perform closure for “almost-closed” octagons in
quadratic time, referred to as incremental closure. Such “almost-
closed” octagons are ones for which inequalities involving very
few variables are not closed. Incremental closure is usually applied
after applying Meet (u) in the assignment statement. Incremental
closure consists of a double loop which is the same as one iteration
of the outermost loop of shortest path closure and a strengthening
step which is the same as for the octagon closure. Thus, we can
apply the same optimizations as we did for closure on all octagon
types. Incremental closure is only useful when we have “almost-
closed” matrices, otherwise, full closure (as discussed so far) has
to be applied.

6. Experiments
In this section we evaluate the performance of our octagon opera-
tors against APRON, a widely used state-of-the-art library imple-
menting octagons.

6.1 Experimental setup
We implemented our approach in the APRON C library by replac-
ing the implementation of its operators with our new algorithms,
but retaining the APRON API. This means that program analyzers
using APRON can directly benefit from our work. We refer to our
new version of APRON as OptOctagon. The full implementation in
double precision can be found in [1] and is used in our experiments
below.

Platform. All of our experiments were carried out on a 3.5 GHz
Intel Quad Core i7-4771 Haswell CPU. The sizes of the L1, L2 and
L3 caches are 256 KB, 1024 KB and 8192 KB, respectively, and the
main memory has 16 GB. Turbo boost was disabled for consistency
of measurements. The library was compiled with gcc 4.8 using the
flags -O3 -m64 -march=native.

Analyzers. To evaluate the performance of our library, we used
four realistic static analyzers written in different languages. All of
these analyzers use the APRON library for octagon analysis. For
each analyzer, we report only those benchmarks which had at least
20 variables.

The first analyzer, CPACHECKER(CPA) [6], is a configurable
program analyzer used in software verification competitions for

Figure 6: Speedup (in log scale) of our closures over the APRON
closure: a) Floyd-Warshall (FW) based closure for dense DBMs,
and b) OptOctagon.

various verification tasks. It is written in Java and originally used
an outdated and incompatible version of APRON. We modified the
source code of the analyzer so that it uses the latest version of
APRON. We tested our library on more than 40 benchmarks for
this analyzer which meet our criteria, some of these contain more
than 10000 lines of code. We report speedups on four benchmarks
which are representative of speedups on the remaining benchmarks.

The second analyzer, TOUCHBOOST(TB) [8], analyzes event-
driven TouchDevelop applications. The analyzer is written in Scala
and runs on top of Sample [14]. We report speedups on the four
most time consuming benchmarks which time out with APRON
after 1 minute.

The third analyzer, DPS [25], analyzes Java programs and in-
troduces synchronization in order to make programs deterministic.
The analysis is implemented in Java and uses the Soot [31] frame-
work (it also uses pointer analysis). We report speedups on all six
benchmarks for this analyzer.

The fourth analyzer, DIZY [24], computes semantic differences
between a program and a patched version of the same program.
The analysis is written in C++ and uses LLVM and Clang. We
report speedups on three representative benchmarks, two of which
linux full and firefox are patches from the Linux kernel
and the Mozilla Firefox web browser.

6.2 Evaluation
We evaluated the runtime and speedup of our library over APRON
at three levels of granularity: 1. The closure operator (a key bot-
tleneck in octagon analysis); 2. End-to-end octagon analysis; and
3. Overall program analysis.

Closure evaluation. We first determine the speedup that our
closure operators achieve compared to the existing APRON closure
(shown in Fig. 6). The values are computed using the aggregate
times that the benchmarks spend in the closure. First, we consider
a AVX-vectorized and optimized Floyd-Warshall based implemen-
tation (FW) for dense DBMs, derived from Algorithm 1. We do not
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Table 2: Closure statistics for benchmarks.

Benchmark Analyzer nmin nmax #closures

Prob6 00 f CPA 44 58 4813
Prob6 30 t CPA 44 58 22170
s3 clnt 2 f CPA 72 72 708
s3 clnt 3 t CPA 79 79 715
gwsfmlau TB 166 186 837
blwd TB 5 50 24170
eeorzcap TB 7 93 5398
jwgqbjzs TB 187 190 1884
crypt DPS 9 237 861
moldyn DPS 9 67 5365
lufact DPS 12 31 142
sor DPS 16 54 70
series DPS 8 21 37
matmult DPS 8 24 10
linux full DIZY 1 78 15900
seq DIZY 1 35 11216
firefox DIZY 1 24 1061
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Figure 7: Trace of runtime of octagon closure on jwgqbjz bench-
mark for APRON, Floyd-Warshall(FW) and OptOctagon.

actually use this code but only show the speedup that one can ob-
tain with processor-specific optimization without reducing the op-
erations count. The speedup is shown in the gray bars and is about
6–8 times. Second, we show the speedup over APRON that our (ac-
tually used) OptOctagon closure achieves, which switches between
different closures as described in Section 5 and is implemented in
a performance-optimized way. It is usually at least as good as FW
but often performs around 20 times and sometimes even more than
600 times better than APRON closure. The latter cases obviously
benefit considerably from the decomposition.

The number of variables which a DBM encodes varies dur-
ing analysis. Table 2 shows the number of closure operations
(#closures) as well as minimum (nmin) and maximum (nmax)
number of variables in DBMs for the closure operator on all the
benchmarks. Comparing to Fig. 6, we conclude that the speedup
for OptOctagon closure increases with nmax and #closures.

Figure 8: Speedup of Octagon analysis for OptOctagon over
APRON on benchmarks (shown in Log Scale).

Fig. 7 shows the runtime of each octagon closure operation
during the analysis of the jwgqbjz benchmark. As we can see,
the DBMs are dense in the beginning but become sparse due to
widening midway through the analysis. FW is 7–8 times faster than
APRON closure whereas OptOctagon is an additional 3 times faster
than FW for dense DBMs. When the DBMs becomes sparse, the
library switches to Decomposed type which provides more than a
1000-fold speedup over FW.

Octagon analysis evaluation. Fig. 8 shows the end-to-end
speedup for octagon analysis that OptOctagon achieves over
APRON on all benchmarks. The best are speedups of 146 times
and 115 times on crypt and s3 clnt 3 t. We obtain more than
10 times speedup for 9 of the 17 benchmarks. The speedup is less
for smaller benchmarks and the minimum speedup is 2.7 times for
series and matmult.

Program analysis evaluation. A static analyzer typically con-
sists of many components besides a numerical abstract domain such
as front-end for parsing, other domains (e.g., pointer analysis), etc.
Thus, the overall analysis speedup is smaller than the pure octagon
speedup. In the future, we believe that some of these components
can also be optimized for performance using methods similar to the
ones in this paper. Table 3 shows the total end-to-end runtime and
speedup of program analysis using OptOctagon instead of APRON
on all benchmarks. We also show the percentage of time that an-
alyzers spent in octagon analysis. Octagon analysis is the bottle-
neck for CPACHECKER and TOUCHBOOST. Thus, we obtain large
speedups for all benchmarks corresponding to CPACHECKER and
TOUCHBOOST with the maximum being 18.7x on the jwgqbjz
benchmark. crypt is the only benchmark for DPS having octagon
analysis as the main bottleneck. We reduce the program analysis
time for crypt by 4x. The overall speedup for the other DPS anal-
yses is negligible. Similarly, octagon analysis is not the main bottle-
neck for DIZY. The maximum speedup is 40% on linux full.

7. Related Work
We already discussed some of the related work throughout the pa-
per. We now briefly mention additional related work. PPL [2] also
provides an implementation of the Octagon domain. It has similar
data structures and algorithms as APRON so we expect it to have
similar performance. The work of [9] presents a new algorithm for
reducing the operation count of incremental closure for the Octagon
domain. Their work does not handle closure which is the key bot-
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Table 3: Speedup of program analysis for OptOctagon over
APRON on benchmarks.

Benchmark Analyzer APRON OptOctagon Speedup

Time (s) %oct Time (s) %oct
Prob6 00 f CPA 29.9 79.4 11.2 38 2.7
Prob6 30 t CPA 97.5 88.9 26.7 54.5 3.7
s3 clnt 2 f CPA 7.2 76.4 1.7 3.6 4.2
s3 clnt 3 t CPA 9 80.8 1.7 3.7 5.3
gwsfmlau TB 83.5 96.3 8.9 65.2 9.4
blwd TB 79.1 80.4 16 5 4.9
eeorzcap TB 89.1 92.6 11.6 46.6 7.7
jwgqbjzs TB 266 98.5 14.2 69.7 18.7
crypt DPS 147 77.8 34.7 2 4.2
moldyn DPS 31.9 17.4 27 2 1.2
lufact DPS 20 0.3 19.2 0.06 1
sor DPS 19.2 0.6 19.3 0.1 1
series DPS 19.7 0.09 19.4 0.03 1
matmult DPS 19.6 0.03 19.4 0.01 1
linux full DIZY 1681 27.5 1244 2.9 1.4
seq DIZY 155 11.6 129 3.4 1.2
firefox DIZY 6 13.9 5 4.9 1.2

tleneck, and the scope for overall performance improvements by
optimizing only incremental closure is very limited. The work of
[5] parallelizes the standard octagon operators on GPUs. We be-
lieve that our improved algorithms when implemented on GPUs
will bring even larger speedups. The work of [17] decompose ma-
trices in the Polyhedra domain dynamically based on independent
components. However, their decomposition is computed separately
for each operator and involves expensive matrix transformations
thereby creating significant overhead.

8. Conclusion and Future Work
We presented a comprehensive approach for optimizing the Oc-
tagon domain, an effective numerical domain for real-world pro-
gram analysis. Our work shows how to decompose the Octagon
matrix online, during analysis, and redesigns the Octagon opera-
tors in a way to take advantage of this decomposition. This involves
creating new data structures and algorithms as well as dynamically
adjusting the Octagon algorithms depending on the sparsity levels.
We also showed how to leverage classic numerical code optimiza-
tions to further reduce the cost of the expensive closure operator.

We provide a complete implementation of our approach inside
the APRON C library. Evaluation on four realistic static analyz-
ers shows massive speedups in the Octagon analysis (over original
APRON) as well as significant speedups of the overall static analy-
sis. Based on these results, we believe that static analyzers using the
Octagon numerical domain will see immediate benefits from using
our new implementation. As future work, we believe the approach
presented here can be applied to other domains [12], [10], [27].
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